Bentzen, J., Boberg-Fazlic N., Sharp P., Skovsgaard C., Vedel C. (2025). Holy Cows and Spilt Milk: The Impact of Religious Conflict on Firm-Level Productivity. Journal of Development Economics 179, 103651. https://doi.org/10.1016/j.jdeveco.2025.103651
Baskaran, T., Hessami Z. (2025). Women in Political Bodies as Policymakers. Review of Economics and Statistics, forthcoming. https://doi.org/10.1162/rest_a_01352
Roos, M., Reccius, M. (2025). Attitude and Expectation Change Through Economic Narratives. In: Czupryna, M., Kamiński, B., Verhagen, H. (eds) Advances in Social Simulation. Springer Proceedings in Complexity. https://doi.org/10.1007/978-3-031-91782-0_2
Golosnoy, V., Okhrin, Y., Roos, M. W. (2025). Empirical Similarity for Revealing the US Interest Rate Policy: Modeling Case-Based Decisions of the FOMC. Empirical Economics, 1-30. https://doi.org/10.1007/s00181-024-02709-6
Klocke, N., Müller, D., Hasso, T., Pelster, M. (2025): The impact of peer returns in social trading, Journal of Behavioral and Experimental Finance 46, 101057. https://doi.org/10.1016/j.jbef.2025.101057
Lenel L. (2025, forthcoming) Tools of Trust. Business Forecasting in the Twentieth Century. Cambridge: Cambridge University Press.
Lenel, L., Nützenadel, A., Streb, J., & Köhler, I. (eds.) (2025, forthcoming). The Routledge Handbook of Economic Expectations in Historical Perspective. London: Routledge.
Müller, H., Blagov, B., Schmidt, T., Rieger, & J., Jentsch, C. (2025) The Macroeconomic Impact of Asymmetric Uncertainty Shocks. The Journal of Economic Asymmetries, 31, e00410. https://doi.org/10.1016/j.jeca.2025.e00410
Baskaran, T., Hessami, Z., and Schirner S. (2024). Young Versus Old Politicians and Public Spending Priorities. Journal of Economic Behavior and Organization, 225, 88-106. https://doi.org/10.1016/j.jebo.2024.07.002
Boberg-Fazlic, N. and Sharp P. (2024). Immigrant Communities and Knowledge Spillovers: Danish-Americans and the Development of the Dairy Industry in the United States. American Economic Journal: Macroeconomics, Vol. 16, No. 1, 102-46. 10.1257/mac.20210074
Deng, J., Yang, M., Pelster, M., Tan, Y. (2024): ‚Social trading, communication, and networks‘, Information Systems Research 35, 1546-1564. https://doi.org/10.1287/isre.2021.0143
Hibbeln, M., Kopp, R. M., & Urban, N. (2024) Heterogeneous Machine Learning Ensembles for Recovery Rate Forecasting. http://dx.doi.org/10.2139/ssrn.3913710
Hibbeln M., Metzler R., Osterkamp, W. (2024) Not on the Same Page – Comprehensibility of Investment Prospectuses. Working Paper. https://dx.doi.org/10.2139/ssrn.4182623
Hufnagel, L. M., & Metzler, R. (2024). Identifying the drivers of economic uncertainty perception in China: a news-based approach. Asia-Pacific Journal of Accounting & Economics, 1–18. https://doi.org/10.1080/16081625.2024.2405494
Lange, K.-R., Rieger, J. and Jentsch, C. (2024). Lex2Sent: A bagging approach to unsupervised sentiment analysis. Proceedings of the 20th KONVENS Conference, 281–291. Link.
Müller, H., Blagov, B., Schmidt, T., Rieger, J., Jentsch, C. (2024) The Macroeconomic Impact of Asymmetric Uncertainty Shocks. Ruhr Economic Paper #1124.
Rieger, J., Jentsch, C. and Rahnenführer, J. (2024). LDAPrototype: A model selection algorithm to improve reliability of latent Dirichlet allocation. PeerJ Computer Science 10.2279. https://doi.org/10.7717/peerj-cs.2279
Rieger, J., Yanchenko, K., Ruckdeschel, M., von Nordheim, G., Kleinen-von Königslöw, K., & Wiedemann, G. (2024). Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine. Studies in Communication and Media, 13. Jg., 1/2024, 72–100. https://doi.org/10.5771/2192-4007-2024-1-72
Banning, F. & Reale, J. & Roos, M. (2023). The Complexity of Corporate Culture as a Potential Source of Firm Profit Differentials. https://dx.doi.org/10.2139/ssrn.4508695
Boumans, D., Müller, H., & Sauer, S. (2023). How media content influences economic expectations: Evidence from a global expert survey. Journal of Forecasting. https://doi.org/10.1002/for.2961
Hibbeln M., Osterkamp, W. (2023) Simple is Simply not Enough – Features versus Labels of Complex Financial Securities. Review of Derivatives Research, Vol. 27, 2024, pp. 113–150. https://doi.org/10.1007/s11147-024-09201-4
Jentsch, C., & Lange, K.-R. (2023). SpeakGer: A meta-data enriched speech corpus of German state and federal parliaments. Proceedings of the 3rd Workshop on Computational Linguistics for Political Text Analysis@KONVENS 2023.
Krause, C., Rieger, J., Flossdorf, J., Jentsch, C. and Beck, F. (2023). Visually Analyzing Topic Change Points in Temporal Text Collections. Vision, Modeling, and Visualization. The Eurographics Association. https://doi.org/10.2312/vmv.20231231
Müller. H. (2023). Challenging Economic Journalism. Covering Business and Politics in an Age of Uncertainty. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-31030-0
Müller, H., Rieger. J., & Hornig, N. (2023). “We’re rolling”. Our Uncertainty Perception Indicator (UPI) in Q4 2020: introducing RollingLDA, a new Method for the Measurement of Evolving Economic Narratives. DoCMA Working Paper #6. http://dx.doi.org/10.17877/DE290R-21974
Müller, H., Schmidt, T., Rieger, J., & Hufnagel, L. M. (2023). “The Inflation Attention Cycle. Updating the Inflation Perception Indicator (IPI) up to February 2023 – a Research Note”. DoCMA Working Paper #13. http://dx.doi.org/10.17877/DE290R-23141
Rieger, J., Hornig, N., Flossdorf, J., Müller, H., Mündges, S., Jentsch, C., Rahnenführer, J. and Elmer, C. (2023). Debunking Disinformation with GADMO: A Topic Modeling Analysis of a Comprehensive Corpus of German-language Fact-Checks. Proceedings of the 4th Conference on Language, Data and Knowledge. Link. GitHub.
Rieger, J., Hornig, N., Schmidt, T., & Müller, H. (2023). Early Warning Systems? Building Time Consistent Perception Indicators for Economic Uncertainty and Inflation Using Efficient Dynamic Modeling. Proceedings of the 3rd Workshop on Modelling Uncertainty in the Financial World. https://github.com/JonasRieger/mufin23/blob/master/paper.pdf
Roos, M. & Reccius, M. (2023). Narratives in economics. Journal of Economic Surveys, 0, 1–39. https://doi.org/10.1111/joes.12576
Schmidt, T., Müller, H., Rieger, J., Schmidt, T., & Jentsch, C. (2023). Inflation Perception and the Formation of Inflation Expectations. Ruhr Economic Papers #1025. http://dx.doi.org/10.4419/96973191
Bittermann, A. and Rieger, J. (2022). Finding scientific topics in continuously growing text corpora. Proceedings of the 3rd Workshop on Scholarly Document Processing. Link. GitHub. PsychTopics App.
Gsottbauer, E., D. Müller, S. Müller, S. Trautmann, and Zudenkova G. (2022). Social class and (un)ethical
behaviour: Causal and correlational evidence. The Economic Journal 132, 2392–2411. DOI: 10.1093/ej/ueac022.
Lange, K.-R., Rieger, J., Benner, N., & Jentsch, C. (2022). Zeitenwenden: Detecting changes in the German political discourse. Proceedings of the 2nd Workshop on Computational Linguistics for Political Text Analysis, 47-53. https://old.gscl.org/media/pages/arbeitskreise/cpss/cpss-2022/workshop-proceedings-2022/254133848-1662996909/cpss-2022-proceedings.pdf
Lange, K.-R., Reccius, M., Schmidt, T., Müller, H., Roos, M., & Jentsch, C. (2022). Towards extracting collective economic narratives from texts. Ruhr Economic Papers #963. https://doi.org/10.4419/96973127
Rieger, J., Lange, K.-R., Flossdorf, J., & Jentsch, C. (2022). Dynamic change detection in topics based on rolling LDAs. Proceedings of the Text2Story’22 Workshop. CEUR-WS 3117, 5-13. https://ceur-ws.org/Vol-3117/paper1.pdf
Rieger, J., Yanchenko, K., Ruckdeschel, M., von Nordheim, G., Königslöw, K. K. V., & Wiedemann, G. (2023). Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine. https://doi.org/10.48550/arXiv.2312.16975
Shrub, Y., Rieger, J., Müller, H. and Jentsch, C. (2022). Text data rule – don’t they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators. Ruhr Economic Papers #964. https://doi.org/10.4419/96973128
Roos, M., Reale, J., Banning, F. (2022). A value-based model of job performance. PLOS ONE, 17. https://doi.org/10.1371/journal.pone.0262430
Benner, N., Lange, K.-R., & Jentsch, C. (2022). Named Entity Narratives. Ruhr Economic Papers #962. https://doi.org/10.4419/96973126
Müller, H., Schmidt, T., Rieger, J., Hufnagel, L. M., & Hornig, N. (2022). “A German Inflation Narrative – How the Media frame Price Dynamics: Results from a RollingLDA Analysis”. DoCMA Working Paper #9. https://doi.org/10.17877/de290r-22632
Blagov, B,, Müller, H., Jentsch, C., Schmidt, T. (2021). The investment narrative: Improving private investment forecasts with media data. Ruhr Economic Papers, No. 921. https://doi.org/10.4419/96973067
Jentsch, C., Lee, E. R., & Mammen, E. (2021). Poisson reduced rank models with an application to political text data. Biometrika, 108(2), 455-468. https://doi.org/10.1016/j.csda.2019.106813
Jentsch, C., Mammen, E., Müller, H., Rieger, J., & Schötz, C. (2021). Text mining methods for measuring the coherence of party manifestos for the German federal elections from 1990 to 2021. DoCMA Working Paper #8. https://doi.org/10.17877/de290r-22363
Müller, H. (2017). Populism, de-globalisation, and media competition: The spiral of noise. Central European Journal of Communication, 9, 1 (18), 64–78. https://doi.org/10.19195/1899-5101.10.1(18).5